Long series of GNSS Integrated Precipitable Water as a climate change indicator

Michał Kruczyk


This paper investigates information potential contained in tropospheric delay product for selected International GNSS Service (IGS) stations in climatologic research.  Long time series of daily averaged Integrated Precipitable Water (IPW) can serve as climate indicator.  The seasonal model of IPW change has been adjusted to the multi-year series (by the least square method). Author applied two modes: sinusoidal and composite (two or more oscillations). Even simple sinusoidal seasonal model (of daily IPW values series) clearly represents diversity of world climates. Residuals in periods from 10 up to 17 years are searched for some long-term IPW trend – self-evident climate change indicator. Results are ambiguous: for some stations or periods IPW trends are quite clear, the following years (or the other station) not visible. Method of fitting linear trend to IPW series does not influence considerably the value of linear trend. The results are mostly influenced by series length, completeness and data (e.g. meteorological) quality. The longer and more homogenous IPW series, the better chance to estimate the magnitude of climatologic IPW changes.


water vapour; GPS; IPW; IWV; tropospheric delay; climate change; climatological time series

Full Text:



Andrews, D. G. (2010). An Introduction to Atmospheric Physics. Second Edition, Cambridge University Press

Bałdysz, Z., Nykiel, G., Figurski, M., Szafranek, K., Kroszczyński, K. (2015). Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing, Acta Geophysica 63(4), pp 1103-1125, doi: 10.1515/acgeo-2015-0033

Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., & Ware, R. (1992). GPS Meteorology: Remote Sensing of Atmospheric Water Vapour using the Global Positioning System, J. Geophys. Res., 97, pp 15,787-15,801

Byun, S. H., Bar-Sever, Yoaz E. (2009). A new type of troposphere zenith path delay product of the international GNSS service. J. Geod. 83 (2009): pp 367–373, doi: 10.1007/s00190-008-0288-8

Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci., 20, pp 1593-1607. doi:10.1029/RS020i006p01593

Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., Van Hove, T., Ware, R., McClusky, S., Herring, T. A. & King, R. W. (1996). GPS meteorology: direct estimation of the absolute value of precipitable water. J. Applied Met. 35, 830–838. doi:10.1175/1520-0450

Forster, P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M. and Van Dorland R. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York

Gradinarsky, L.P., Johansson, J.M., Bouma, H.R, Scherneck, H.-G., Elgered, G. (2002). Climate monitoring using GPS. Physics and Chemistry of the Earth, 27 pp.335-340. doi: 10.1016/S1474-7065(02)00009-8

Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. (2008). GNSS – Global Navigation Satellite Systems GPS, GLONASS, Galileo, and more. Springer Wien NewYork

Jin, S., Park, J.-U., Cho, J.-H., Park, P.-H. (2007). Seasonal variability of GPS-derived zenith tropospheric delay (1994-2006) and climate implications. J.Geophys. Res., 112: D09110. doi:10.1029/2006JD007772

Kruczyk, M. (2014). Integrated Precipitable Water from GNSS as a climate parameter, Geoinformation Issues Vol. 6, No 1 (6), 21–35/2014

Kruczyk, M., Liwosz, T., (2012). Tropospheric Delay from EPN Reprocessing by WUT LAC as Valuable Data Source – in Comparison to Operational EPN Products and Aerological Data, Reports on Geodesy, No 1 (92) /2012, pp. 105–118

McIlven, R. (2010). Fundamentals of Weather and Climate, Second Edition, Oxford University Pess

Ning, T., Elgered, G. (2012). Trends in the atmospheric water vapour content from ground-based GPS: The impact of the elevation cutoff angle. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5 pp. 744-751. doi:10.1109/JSTARS.2012.2191392

Rocken, C., Ware, R., Van Hove, T., Solheim, F., Alber, C., Johnson, J., Bevis, M., Businger, S. (1993). Sensing atmospheric water vapor with the Global Positioning System. Geophys. Res. Lett., 20, 2631

Salby, M. L. (2012). Physics of the Atmosphere and Climate. Cambridge University Press

Shelton, M. L. (2009). Hydrometeorology. Perspectives and Applications. Cambridge University Press

Trenberth, K. E., Dai, A., Rasmussen, R.M. and Parsons, D.B. (2003). The changing character of precipitation. Bull. Amer. Meteor. Soc., 84 (9), pp. 1205-1217. doi: 10.1175/BAMS-84-9-1205

Yuan, L.L., Anthes. R.A., Ware, R.H., Rocken, C., Bonner, W.D., Bevis, M.G., Businger, S. (1993). Sensing Climate Change Using the Global Positioning System. J.Geophys. Res., Vol. 98 No. D8, pp. 14 925 - 14 937

DOI: http://dx.doi.org/10.2478/rgg-2015-0008


  • There are currently no refbacks.

Copyright © Reports on Geodesy and Geoinformatics 2014-2018, e-mail: reports.geodesy@gmail.com
eISSN: 2391-8152