Integrated precipitable water from GPS observations and CIMEL sunphotometer measurements at CGO Belsk

Michał Kruczyk, Tomasz Liwosz, Aleksander Pietruczuk


This paper describes results of integrated precipitable water co-located measurements from two techniques: GPS solution and CIMEL-318 sun-photometer. Integrated Precipitable Water (IPW) is an important meteorological parameter and is derived from GPS tropospheric solutions for GPS station at Central Geophysical Observatory (CGO), Polish Academy of Sciences (PAS), Belsk and compared with sunphotometer (CIMEL-318 device by Cimel Electronique) data provided by Aerosol Robotic Network (AERONET). Two dedicated and independent GPS solutions: network solution in the sub-network of European Permanent Network (EPN) and precise point positioning solution have been made to obtain tropospheric delays. The quality of dedicated tropospheric solutions has been verified by comparison with EPN tropospheric combined product. Several IPW comparisons and analyses revealed systematic difference between techniques (difference RMS is over 1 mm). IPW bias changes with season: annual close to 1 mm IPW (and semi-annual term also present). IPW bias is a function of atmospheric temperature. Probable cause of this systematic deficiency in solar photometry as IPW retrieval technique is a change of optical filter characteristics in CIMEL.


water vapour; GPS; IPW; tropospheric delay; sunphotometer

Full Text:



Alexandrov, M.A., Schmid, B., Turner, D.D., Cairns, B., Oinas, V., Lacis, A.A., Gutman, S.I., Westwater, E.R., A. Smirnov & J. Eilers (2009). Columnar water vapor retrievals from MFRSR data, J.Geophys.Res., 114, D02306, DOI:10.1029/2008JD010543

Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., & R. Ware (1992). GPS Meteorology: Remote Sensing of Atmospheric Water Vapour using the Global Positioning System, J. Geophys. Res., 97, pp. 15 787-15 801

Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R.A., Rocken, C., & R. Ware (1994). GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, Journal of Applied Meteorology, Vol. 33, pp. 379-386

Böhm, J. & Schuh, H., (2013). Atmospheric Effects in Space Geodesy, Springer Heidelberg New York Dordrecht London, DOI:10.1007/978-3-642-36932-2

Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. & G. Elgered (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Science, 20, pp. 1593-1607

Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., Van Hove, T., Ware, R., McClusky, S., Herring, T. A. &

King, R. W. (1996). GPS meteorology: direct estimation of the absolute value of precipitable water. J. Applied Met. 35, pp. 830–838

Halthore, R.N., Eck, T.F., Holben, B.N. & B.L. Markham (1997). Sunphotometric Measurements of Atmospheric Water Vapor Column Abundance in the 940-nm Band. J. Geophys. Res., 102, pp 4343-4352

Holben, B.N., T.F.Eck, I.Slutsker, D.Tanre, J.P.Buis, A.Setzer, E.Vermote, J.A.Reagan, Y.J.Kaufman, T.Nakajima, F.Lavenu, I.Jankowiak & A.Smirnov (1998). AERONET - A federated instrument network and data archive for aerosol characterization, Rem.Sens.Env., 66 (1), pp 1-16

Holben, B.N., Tanre, D., Smirnov, A., Eck, T.F., Slutsker, I., Abuhassan, N., Newcomb, W.W., Schafer, J., Chatenet, B., Lavenue, F., Kaufman, Y.J., Castle, J.V., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karnieli, A., O'Neill, N.T., Pietras, C., Pinker, R.T., Voss, K. & G. Zibordi (2001). An emerging ground-based aerosol climatology: Aerosol Optical Depth from AERONET, J. Geophys. Res., 106, pp. 12 067-12 097

Hofmann-Wellenhof, B., H. Lichtenegger & E. Wasle (2008). GNSS – Global Navigation Satellite Systems GPS, GLONASS, Galileo, and more. Springer Wien NewYork

Kruczyk, M. (2012). IGS Tropospheric Products - Quality Verification and Assessment of Usefulness in Climatology, International GNSS Service Workshop Symposium, 23 – 27 July 2012, Olsztyn, Poland, poster: P06-09

Kruczyk, M. (2013). Opóźnienie troposferyczne GNSS i jego zastosowanie do badań stanu atmosfery. Wydawnictwo Politechniki Warszawskiej, seria Prace naukowe Geodezja i Kartografia, nr 54, Warszawa 2013

Kruczyk, M. (2014). Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator, Reports on Geodesy and Geoinformatics, Vol. 99 (2015) ss. 1-18; DOI:10.2478/rgg-2015-0008

Kruczyk, M. (2015). Comparison of Techniques for Integrated Precipitable Water Measurement in Polar Region, Geoinformation Issues Vol. 7, No 1(7)/ 2015 pp. 15-29

Kruczyk, M. & Liwosz, T. (2012). Tropospheric Delay from EPN Reprocessing by WUT LAC as Valuable Data Source – in Comparison to Operational EPN Products and Aerological Data, Reports on Geodesy, No 1 (92)/2012, pp 105-118.

Kruczyk, M. & Liwosz, T. (2015). Integrated precipitable water vapour measurements at Polish Polar Station Hornsund from GPS observations verified by aerological techniques, Reports on Geodesy and Geoinformatics, Vol 98 (2015) 1-17; DOI: 10.2478/rgg-2015-0001

Kruczyk, M., Liwosz, T. & Rogowski, J. (2011). IPW from various sources: GPS tropospheric solution, sunphotometer, radiosounding and numerical weather prediction model – conformity analysis. Geophysical Research Abstracts Vol. 13, EGU2011-12348, EGU General Assembly 2011

Liwosz, T., Kruczyk M. & Rogowski J. (2010). WUT LAC Report. Paper presented at 7th EUREF LAC EUREF Analysis Workshop, Warsaw, November 18-19 2010 (

Van Malderen, R., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., De Mazière, M., Wagner, T., De Backer, H. & Bruyninx, C. (2014). A multi-site techniques intercomparison of integrated water vapour observations for climate change analysis. Atmospheric Measurement Techniques Discussions, Volume 7, Issue 2, 2014, pp 1075-1151

McIlven, R. (2010). Fundamentals of Weather and Climate, Second Edition, Oxford University Press

Munch, S.W. (2014). Atmospheric Water Vapour Sensing by Means of Differential Absorption Spectrometry Using Solar and Lunar Radiation, Geodätisch-geophysikalische Arbeiten in der Schweitz, Volume 92

Pacione, R., Pace B., de Haan S.; Vedel H., Lanotte R. & Vespe F. (2011). Combination Methods of Tropospheric Time Series, Adv. Space Res., 47(2), pp 323-335, DOI: 10.1016/j.asr.2010.07.021

Pérez-Ramírez, D., Whiteman, D.N., Smirnov, A., Lyamani, H., Holben, B., Pinker, R., Andrade, M. & Alados-Arboledas, L. (2014). Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS and radiosondes at ARM sites, J. Geophys. Res. - Atmos., 119, DOI:10.1002/ 2014JD021730

Platt, U. (1994). Differential optical absorption spectroscopy (DOAS), Chem. Anal. Series, 127, pp 27 – 83

Querel, R. & Naylor D. (2011). Lunar absorption spectrophotometer for measuring atmospheric water vapour, Applied Optics Vol. 50, No. 4 pp 447-453

Rocken, C., Ware, R., Van Hove, T., Solheim, F., Alber, C., Johnson, J., Bevis, M. & Businger, S. (1993). Sensing atmospheric water vapor with the Global Positioning System. Geophys. Res. Lett., 20, 2631

Saastamoinen, J. (1972). Atmospheric Correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy Geophysics Monograph Series, S. W. Henriksen et al., Ed., pp 247-251

Salby M.L., (2012). Physics of the Atmosphere and Climate, Cambridge University Press.

Schmid, B. et al. (2001). Comparison of columnar water-vapour measurements from solar transmittance methods, Applied Optics Vol. 40, No. 12 pp 1886-1896

Shelton, M.L., (2009). Hydrometeorology. Perspectives and Applications, Cambridge University Press.

Vedel, H., Mogensen, K.S. & X.-Y. Huang (2001). Calculation of zenith delays from meteorological data, comparison of NWP model, radiosonde and GPS delays, Phys. Chem. Earth, Vol. 26, No 6–8, pp. 497–502.



  • There are currently no refbacks.

Copyright © Reports on Geodesy and Geoinformatics 2014-2018, e-mail:
eISSN: 2391-8152