The possibilities of using the terrestrial scanning data for classification of rocks in limestone mine "Czatkowice"

Cezary Toś


This paper presents results of a research of potential utilisation of the intensity of laser beam reflection recorded by ground-based lasers, for an initial classification of rock formations within the Czatkowice Limestone Quarry. As part of the research, spectrometric analysis in visible (VIS), near-infrared (NIR) and Short-wavelength infrared (SWIR) bands was carried out for rock samples typical for the Czatkowice Quarry. Moreover, the rock samples were scanned using equipment working within different wavelengths. The reflected intensity of the laser beam recorded for each rock sample with several different scanners were analysed to assess their potential use for rock classification. The results of this analysis were then compared with spectral curves of each sample. The relationship between the intensity of the laser beam reflection and the spectral curves can be used for selection of most suitable scanner for rock classification.


Limestone Quarry, Laser scanning, Intensity, Classification.

Full Text:



Buckley, S. J., Kurz, T. H., Howell, J. A., Schneider, D., (2013). Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis. Computers & Geosciences, 54: 249–258. doi: 10.1016/j.cageo.2013.01.018.

Franceschi, M., Teza, G., Preto, N., Pesci, A., Galgaro, A., Girardi, S., (2009). Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 522528. doi: 10.1016/j.isprsjprs.2009.03.003

Hoefle, B., Pfeifer, N., (2007). Correction of Laser Scanning intensity data: Data and model-driven approaches. International Journal of Photogrammetry and Remote Sensing. 62(6), 415–433. doi: 10.1016/j.isprsjprs.2007.05.008

Maciaszek, J., Ćwiąkała, P. (2010). Badania możliwości zastosowania skanowania laserowego do monitoringu osuwisk zboczy wyrobisk odkrywkowych na przykładzie KWB ,,Bełchatów”. Przegląd Górniczy, 66 (6), 52–57. Retrieved from

Penasa, L., Franceschi, M., Preto, N., Teza, G., Polito, V., (2014). Integration of intensity textures and local geometry descriptors from Terrestrial Laser Scanning to map chert in outcrops. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 8897. doi: 10.1016/j.isprsjprs.2014.04.003

Pesci, A., Teza, G.(2008). Effects of surface irregularities on intensity data from laser scanning: an experimental approach. Annals of Geophysics, 51,(5/6). 839-848. doi: 10.4401/ag-4462

Ratcliffe, S., Myers, A. (2006). Laser Scanning in the Open Pit Mining Environment A Comparison with Photogrammetry. I-SiTE Product Development White Paper. June 2006. Retrieved from

Richards, J.A., (1993). Remote Sensing Digital Image Analysis (New York: Springer-Verlag) Chapter 10.

Rosenfield, G.H., and K. Fitzpatric-Lins, (1986). A Coefficient of Agreement as a Measure of Thematic Classification Accuracy. Photogrammetric Engineering and Remote Sensing, 52 (2). 223-227

Soudarissanane, S., Lindenbergh, R, Menenti, M., Teunissen P., (2009). Incidence angle influence on the quality of terrestrial laser scanning points. Laser scanning 2009, IAPRS, XXXVIII, (Part 3 W8) 183-188. Retrieved from:

Toś, C., Wolski, B., Zielina, L. (2010) Scanning tacheometers. Application of scanning technology at generating of high accuracy models of engineering objects. Kraków: Wydawnictwa Politechniki Krakowskiej.

Toś, C. (2013). Supervised classification of laser scanning data in the assessment of technical conditions of masonry constructions. Technical transactions. 1-Ś/2013.

Voegtle, T., Schwab, I., Landes, T. (2008). Influence of different materials on the measurements of terrestrial laser scanner. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37 (B5). 1061-1066. Retrieved from

Żaczek-Peplińska, J., Falaciński, D. (2011) Evaluation of possibilities to apply laser scanning for assessment of conditions of concrete. Reports on geodesy, 1(2011), 537-544. Retrieved from:



  • There are currently no refbacks.

Copyright © Reports on Geodesy and Geoinformatics 2014-2018, e-mail:
eISSN: 2391-8152