Integrated precipitable water vapour measurements at Polish Polar Station Hornsund from GPS observations verified by aerological techniques

Michał Kruczyk, Tomasz Liwosz

Abstract


We present results of the comparison of integrated precipitable water measurements from GPS solution and aerological techniques: CIMEL-318 sun-photometer and radiosoundings (RAOB). Integrated Precipitable Water (IPW) - important meteorological parameter is derived from GPS tropospheric solutions by known procedure for GPS station at Polish Polar Station, Hornsund (Svalbard). The relation between 2 m temperature and the mean temperature of atmosphere above, used to convert from wet part of tropospheric delay (ZWD) to IPW, has been derived using local radiosonde data at Ny Alesund. Sunphotometer data have been provided by AERONET. Quality of dedicated tropospheric solutions has been verified by comparison with EPN tropospheric combined product. Several IPW comparisons and analyses lead to determination of systematic difference between techniques: GPS IPW and sunphotometer data (not present in case of RAOBs). IPW measured by CIMEL is on average 5% bigger (0.5 mm) than IPW from GPS. This bias changes seasonally and is a function of atmospheric temperature what signals some systematic deficiencies in solar photometry as IPW retrieval technique. CIMEL IPW show some temperature dependent bias also in relation to radiosoundings.


Keywords


Water Vapour; GPS; IPW; IWV; Tropospheric Delay; Sunphotometer; Radiosoundings; Polar Research

Full Text:

pdf

References


Alexandrov, M.A., Schmid, B., Turner, D.D., Cairns, B., Oinas, V., Lacis, A.A., Gutman, S.I., Westwater, E.R., A. Smirnov and J. Eilers, (2009). Columnar water vapor retrievals from MFRSR data, J.Geophys.Res., 114, D02306, doi:10.1029/2008JD010543

Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., & Ware, R. (1992): GPS Meteorology: Remote Sensing of Atmospheric Water Vapour using the Global Positioning System, J. Geophys. Res., 97, pp 15,787-15,801

Byun, S. H., Bar-Sever, Yoaz E. (2009). A new type of troposphere zenith path delay product of the international GNSS service. J Geod (2009) 83: pp 367–373, doi: 10.1007/s00190-008-0288-8

Dach, R., U. Hugentobler, P. Fridez, M. Meindl (2007) Bernese GPS Software Version 5.0. User manual, University of Bern, 2007

Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers A. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci., 20, pp 1593-1607. doi:10.1029/RS020i006p01593

Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., Van Hove, T., Ware, R., McClusky, S., Herring, T. A. & King, R. W. (1996). GPS meteorology: direct estimation of the absolute value of precipitable water. J. Applied Met. 35, 830–838. doi:10.1175/1520-0450

Halthore, R.N., Eck, T.F., Holben B.N., & Markham, B.L. (1997). Sunphotometric Measurements of Atmospheric Water Vapor Column Abundance in the 940-nm Band. J. Geophys. Res., 102, pp 4343-4352

Holben, B.N., Tanre, D., Smirnov, A., Eck, T.F., Slutsker, I., N.Abuhassan, W.W.Newcomb, J.Schafer, B.Chatenet, F.Lavenue, Y.J.Kaufman, J.Vande Castle, A.Setzer, B.Markham, D.Clark, R.Frouin, R.Halthore, A.Karnieli, N.T.O'Neill, C.Pietras, R.T.Pinker, K.Voss, and G.Zibordi, (2001). An emerging ground-based aerosol climatology: Aerosol Optical Depth from AERONET, J. Geophys. Res., 106, pp 12 067-12 097

Hofmann-Wellenhof B., Lichtenegger, H., Wasle E. (2008). GNSS – Global Navigation Satellite Systems GPS, GLONASS, Galileo, and more. Springer Wien NewYork

Kruczyk, M., Liwosz, T., Pietruczuk, A. (2015): Integrated Precipitable Water from GPS Observations and CIMEL Sunphotometer Measurements at CGO Belsk, submitted to Artificial Satellites

Liwosz, T., Kruczyk, M., Rogowski, J. (2010). WUT LAC Report. Paper presented at 7th EUREF LAC EUREF Analysis Workshop, Warsaw, November 18-19 2010 (http://www.epncb.oma.be/_newsmails/workshops/EPNLACWS_2010/day1/s2/8_wut_lac_report.pdf)

McIlven, R. (2010). Fundamentals of Weather and Climate, Second Edition, Oxford University Pess

Pérez-Ramírez, D., D.N.Whiteman, A.Smirnov, H.Lyamani, B.Holben, R.Pinker, M.Andrade, L.Alados-Arboledas, (2014). Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS and radiosondes at ARM sites, J. Geophys. Res. - Atmos., 119, doi:10.1002/ 2014JD021730

Rocken, C., Ware, R., Van Hove, T., Solheim, F., Alber, C., Johnson, J., Bevis, M., and S. Businger, (1993). Sensing atmospheric water vapor with the Global Positioning System, Geophys. Res. Lett., 20, 2631

Vedel, H., Mogensen, K. S., Huang, X.-Y. (2001). Calculation of zenith delays from meteorological data, comparison of NWP model, radiosonde and GPS delays. Phys. Chem. Earth, Vol. 26, No. 6-8, pp. 497–502




DOI: http://dx.doi.org/10.2478/rgg-2015-0001

Refbacks

  • There are currently no refbacks.


Copyright © Reports on Geodesy and Geoinformatics 2014-2018, e-mail: reports.geodesy@gmail.com
eISSN: 2391-8152